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SUMMARY

The pitching-moment derivatives Cm
q

are developed for a slender-delta-wingand

&id C% at

slender-body
having no af%erbody. By drawingan smalogy between the

supersonic speeds

combination
aerodynamics of

the wing-body section of the combination and the aerodynamics-of a delta
wing alone, the results for the slender-delta-wingand slender-body com-
bination are modified to the extent that approximate solutions for C

%
and C% for broad-delta-wing and slender-body combinations can be

obtained. I

,’

=ODwTION
,., ,,

Various methods, based on linear theory, for obtaining solutions
for the flow about wing-body conibinationshave been developed for the)
determination of the lift and moment due to singleof attack. Refer-
ences 1 to 7 comprise a fair~ ‘comprehensivelist of most of “thesignif-
icant of.these methods, which include both approximate and exact solu-
tions. All the exact solutions to the linearized differential equation .
of steady su~rsonic flow, however, employ iteration processes, infinite
series, or both, and their practical application resu.lts‘ina~roximate
solutions although the error ‘isoften negligible, depending upon the
particular problem, rate of tohvergedce;”nimiberof iterations”,and so .
fotih. Spreiter (reference 7) has presented soltiions in closed form
to the two-dimensional Lapl,ac,e,eq+ationof potential flow for,t@ lift
and moment of wing-%ody combinations,-’ These solutions apply to the su*r-
sonic range ‘forthe limiting case of a slender wing-body configuration. -
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I

For the stability derivatives of wing-body combinations, there sxe
. a few papers on the dsmping-in-ro13 characteristics (see, for exanplej

references 8 and 9) but none for the damping h pitch.

The purpose of the present paper is to extend the method used by
Spreiter in reference 7 to the calculation of the pitching-moment deriva- ‘
tives due to constant rate of pitch

‘))

c%
and due to conslxantaccel-

erated motion in the vertical direction c% for a slender-delta-wing

and slender-body cotiiuation. M addition, an a~roxhate soltiion to
these derivatives is develo~d for a broad-delta-wing and slender-body
combination in supersonic flow by introducing certain modifying factors
into the slender-delta-wingand slender-body results.

Cetiain conditions sre placed upon the configuration. The body
ahead of the wing is slender, has a circular cross section, and is
pointed at the nose, and the slope of the body meridian section is
centtiuous. For the wing-body section, the wing semiapex angle is small;
along the w5ng-bo@ juncture, the body radius is a maximum and is con- .
starrt;and finally, the configuration has no afterbody (see fig. 1).

SYMBOIS

potential functions

stream functions

complex variable (y + iz)

body radius
wing-be@

body radius

(R = R(x) on body ahead of ying and R = a along
section)

along w5ng-body section

y-coordinate of wing leading edge

velocity in positive z-direction

polar coordinates

constant

Constsxrb

~ veloci~ Of pitch

time rate of change of angle of attack
()

1 dw
T=

.

. —— .—. —-—— —.— .——. .-. -— -—. ——.



NACA TN 2553 3

i’

,-

P

P

t

x,y,z

v

%

ii

M

A

cm

c
‘q

c%

c
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c’ .

z

e

perturbation pressure (difference in yressure between body
surface and free stream)

density of fluid

ttie

Cartesian coordinates

free-stream velocity

point of rotation measured from nose

inward-drawn unit normal vector

pitching moment

area of basic wing (including portion enclosed by body)

pitching-moment coefficieti L4

nondimensional stability derivative due to constant rate of

(r)) ‘
m

pitch —
@
2V q+

nondimezwional’stability derivative due to constant accelerated

(() )*m
motion in vertical direction —

$$ ;-O
.

root

mean

root

total length of wing-body configuration

chord of basic wing

()
aerodynamic chord of basic wing $ c

chord of exposed wi.qj

semiapex angle of basic wing

,-

,
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‘o valueof s at x=% orat co

‘max mECdmUmvslueof s(valueof s at x.2)

co point of rotation measured from apex of basic -j positive
in positive x-direction

‘>‘>g>
h,m interference factors

M Mach number

6

K= tan E

Q constant of inte~ation

k
‘e

E’($K) complete elliptic imbegral of second kind

f pz/2 \\jo h -(. - $2K2)s~2e+
F’(@K) complete elliptic integral of first kind

xl = 1 - ~2K2

( )
1- 2$2K2 E’(PK) + fJ2K% (PK)

NMw m 2553

.
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Stiscripts:

W

B body

q due to q

& dueto~

ANALYSIS

The linearized differential equation of steady supersonic flow is

At present an exact solution to this equation does not exist in

p a29
form for wing-body combinations. However, if the term p —

ax2
very small with respect to the other terms of this equation, it

closed

becomes

may be
neglected. Solutions to the Itaplaceequation which results from dropping

2
the term ~2 ?-@ ~ve been fo@ ~ closed form for t~ 1~ ad m~ent

a2
due to angle of attack (reference 7). It has.been found that the condi-

tion necessary for B2 ~ to be negligible for ~ angle-of-attack case

is that the configurationbe slender and that P2 be not excessive. For

a delta-wing and body combination, the term slender implies that ~

d2R
and K are very small.

z

In the preseti paper, which treats the steady-litclulngand the
time-dependent, constant-accelerationcases of delta-wing aid body
combinations, a velocity potential satis~ing the two-dimensional
Laplace equation is used. ~ the appendix it is shown that the conditions
to be satisfied for the Laplace solution to be applicable to the super-

sonic range are that
d%

% ~ “
~ and & be very small.

.
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After a velocity potential which satisfies the Laplace equation is
found, the next step in the analysis is the determination of the pressure
distributions over the slender-delta-wingand slender-body combination
resulting from the two types of motion which give rise to Cmq and c%,

namely, constant rate of pitch and const- accelerated motion in the
positive z-direction, respectively. When the pressure distribution is
lmown, the moment ~ be calculated about any Ws
and, from their respectim definitions,

c% d
mined. The configuration to be considered and the
employed are shown ti figme 1.

Velocity Potential

Spreiter (reference 7) shows that the complex
uniform stresm of velocity w at infinity flowing

of the configuration,
cm - then be deter-

coordinate system

.

potential for a
vertically downward

over a stationary two-dimensional circ~ cylinder symmetrically located
on a horizontal flat plate is

$’ + ilJr’= iw
.

where o

z =y+iz

R radius of cylinder

i+%)’-(E’+q”2
-1

(1)

s semispsn of plate measured from center of cylinder

For a slender configuration describing a slow, steady pitching
motion, the cross-flow veloci~ distribution is, to the first order,
propotiional to x. Inasmuch as potential flow is assumed, this velocity
distribtiion must be looked upon as being generated by the motion of the
configurateion .jnfl~d which is at rest, because, if the distribution
were due to the motion of the fluid about a stationary body, the flow
must be rotational and the assumption of potential flow is then violated.

The complex potential of the aforementioned configuration moving
upward thro~ still air with the vertical velocity w then is

@+it=iw{[z+%~-(s+$fll(’,

.
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Transforming to polar coordinates (Z = r(cos f3+ i sin 19))and solving
for the velocity potential gives

{II 1/2

@=.WL8+R8+S8+R& r4+R4s4+R4
@~~

i-4R4COS22$ - 2 ——
)r2 E32 cOB% -

.4 +R4 S4

1}

+R4 1/2

—co1326+—
3$

-r sine
~2 (3)

Equation (3) id the general expression for the velocity potenkial..
Whether # pertains to the constant-pitching or the constant-acceleration
case depen@ upon the value of w. For a Mng-body configuration pitching
aboti a point ~ from the nose, the vertical velocity w varies,along
the length of’t~ configuration according to w
stant acceleration in the yositive z-direction,
time according to

The equation

(z?)!lheterm *ar2
on the body it is

w= Civt ●

Pressure Distribution

for the pressure distribution

= q (X - x0). Fo~ con-
the velocity varies with

is

(4)

does not contribute to either the lift or moment since

-tric m on the KLIWS, although ~ iS

Haa
U-L

metric,
&

is symmetric; therefore, for the configuration
, ,.

P=p(vg+g)

For the case of pitching with constant angular velocity,

alrtisym-

considered,

(5)

(6)

. .. . ,- .. . . . ..- ._. . .. .. . ... .. .. .. . . .. . . .. .. .. .._. ___ c-_ ,_ —.—— .—-—____...— ..
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and for constank acceleration, evaluated attimet= O,.

(7)

In order to determine the loading over the wing-body combination as
given by equations (6) and (7), the pressure distribtiions in two regions
must be considered for each expression. They are:

(a) P%~ on t~ body where r = R

(b) p%~ on the wing where 6’= o

For the pitching wing-body combination with
preceding conditions, equation (6) gives for
and wing, R SpeCtiW~,

T #

~~r~8

w= q(x - ~) and the
the pressure over the body

—

(q) 1-Rs Sill6 + ~k + R4 - ~2S2COS 2f3
p ~ = -pvq s

+

2R(x -~) R2 -“a2cos2(3 ~ x- -)( Sk - Rk) ds
—+

182A+ + d+ - 2R%AOS 2e z

(8a)
4 + R4 - ~2s2cos 29 a

() F ‘(r2-8 2 R4 - r282
Pq ~~= -Pvq

+ ~3(X-~)r2-s2 ~+

rs
rsi(

r2 -
x

s2 R4 - r2s2 dx

r(x - m) (s4-Rk),

dS2 + X- 82 # - ?%2) 1ds (8b)
G

Similsxly, for the case of constant acceleration, in which w = vat is
used, equation (7) yields

.-

.

() ds4+R4- 2R2S2COS 2e - Rs sin 0
p& ~ = -pva s (9a)

.,

.

I
L____ —— . .._. -—-. — .-. ——. ..— —— ..— .—— ..— .——. -—— .-— ~-.-- .- —-. .
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.

K,’ - s’ R4 - r’s’

rs (9)

c and ~ for Slender-Delta-Wing and Slender-Body Combinations
‘q

The moment on the wing-body configuration measured about a point X.

from the nose is

M=
[

(X-xo)fi. pdll (lo)

where E is an inward-drawn unit vector, normal to the surface, and A
represents the surface area of the configurateion. Now

cm= M
$V’AE
2

‘% =

Therefore Cmq and C% are respectively,

D2 /2
4 (x - XO)(pq)# S& e dO dx +

2-c’ o

Jr 1)

(x - XO)(PJW dr dx (n)
l-c’ a

. . . . ..- —.....-- —- . ...--— —— -— —-- .—. — —.—..—— -—— .- .. .. ——— —-— —-——— —-— .-- —-...
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,%=$(.~{~-.~,. ,(x - xJ(p/JBR sin e de dx -1-

(12)

where the first integral in each expression is the cotiribtiion of the
body ahead of the wing and the last two in each expression are the
contributions of the wing-body section.

The conditions to be imposed in evaluating these integrals are:

(a) On the body ahead of the wing, s = R

(b) On the body at the wing-body section, R = a and ~ = O

(c) On the wing, — = Constant = tan G
E

.
1

Integration of the terms for the’wing-body section of the configuration
may be simplifiedby making the sulstitutions for x and ~ which are

suggested by condition (c). Since $ = tam e,

where Q is a comtant. Therefore,

‘o-Q
‘o=—tan e,

—.

r

— .
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and the limits of integration qre now from s = a to s = ~. from

the geometry of the configuration (see fig. 1), ~u = c tan e and
. ‘o = co tanc, where co is the location of the point of rotation

measured from tk apex of the basic wing, positive in the positive
x-direction.

%forming the operations indicated in equations (U) and (12) and
*fiittiMg limits, ~ = C t~ C, ad So = co tan 6 res~ts ~

41’(
l-c’

J J

2-C f
Cm -=-—

q
(x - ~)R2dx - * (x-%J2R~ax-

A72 o A@ O

1

(13)

where

.

.
‘,

‘}’

(221 4
e=l-—k-—+—

3 33 )
loge ; k’

~ 1-= 2k2 + k’

h=l-
( )

‘k2+ 3+ ’lo~~k4

.

m.l - 6k2 + 8k3 - 3k4

The variation of these interference’factors with k is shown in figure 2.
.

) I
#

,,
-.. . . . . .< . . .. . . . . . . . ... ----- _, _,---- -- - . ----- .-. ,- ——-----. -._. . . .. ...._. .-_— ____ ----- ____
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Equations (13) and (14) are the expressions for Cm and C
%

for
~

a slender-delta-wingand slender-body combination correspondingto the
conditions stipulated. When these terms are added to obtain the damping-
in-pitch parameter Cm

~ + c%> integration by parts allows the resulting

expression to be written as *

cmq+~=--p-c’)-%]2 -’-+e-:f)+

Again, from the geometry of the configuration,when k+l,

( )(z-c’ )-~= -co- a
tan E

This relation

cm +C%=
~

( 15)

allows equation (15) to be written as
.

When k = 1, the ~ span goes to zero, and
revolution

co-~ )mc
(16)

for a slender body of

(18)

.

——.—— -.- —.. .—...—.. -—----- .. -.-—.- –. ----—-— ..—--. –.——. —– .-— .--- –.. –. ——-—----- . . .. .
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cm +.=
q %

where A and Z represent some
tively, of the body.-
ence 10) if A = fia2

When R=a=O,
delta wing

--(z - XJ* (19)

characteristic area and length, respec-
Equation (19) agrees with Miles’ result (refer-
and ~=z.

the body radius goes to zero, and for a slender

which are the expressions for Cmqandc% for the slender delta wing

found by Rilmer (reference U) .

From these equations for Cm and C% the terms for the wing-
q

body section of a slender-delta-wingand slender-body combination are
seen to be in the ssme form as c% and C~ for the basic wing alone. -

Each term of
factor which
maximum wing
which resuit

Cm and
q

the equations for the ‘basicwing alone is modified by a
is a function of the ratio of the body diameter to the
span. This modification is due to the fierference effeets
from placing a slender body on a slender delta wing.

c%for Broad-Delta-Wing and Slender-Body Combinations

From practical considerations, solutions for Cm and C% for

broad-delta-wing and slender-bodyccmibinationsin supqr-sonicflow are
desired. A method of obtaining an approximate solution to this
problem from the preceding development is suggested by the slmilarities
between the expressions for the slender delta wing alone and for the
slender-delta-wingand slender-body section of the configuration. An
intuitive approach would be to assume that a delta-wing and slender-
body section, in going from a slender-delta-wingand slbnder-body section
to a broad-delta-wing and slender-body section, follows the same laws
that a delta wing alone follows in making the same transition (see the
next section for a discussion of the vslidity of this assumption).

-—— —.. ..— -— —. . —--—.. ——— .. . —. ._ — .
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Investigationsby Brown and Adams (reference 12) and by Ribner and
Malvesttio (reference 13) made after the publication of Ribner’s paper
on the stability derivatives of slender delta wings (reference U_) show
that the stability derivatives of broad delta wings in compressible
supersonic flow such that P tan e < 1 are the same as the results for
the slender delta wing multiplied by certain elliptic integrals which
are functions of the wing semiapex angle and the Mach number of the flow.
Applying these laws to the wing-body section gives

(22)

where X14 X2, and k~ are the appropriate elliptic integrals (see

fig. 3). The damping-in-pitchparsmeter is

(24)

In order to determine

for the configuration when
(P tan E > 1), the analogy
by a broadening delta wing

approximate expressions for Cm and C
%

the wing leading edges are supersonic
drawn previously between the laws foUowed
alone and a broadening-delta-wing and slender-

body section iS continued into the region where p tan e > 1.

As a delta wing alone continues to broaden to the extent that
ptan~>l, the equations for Cm (see reference 12) and C% sre

q

I

-. .- .. . ..— —. ——— -.—— .—— — .— —...
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I

%,=-$-?)+:2(+ (25)

()

49 co (26)C%=7 B-T

(c%was obtained by use of equation (15) in reference 13 and agrees

with Miles’ result (reference 14).) Therefore the derivatives for a

broad-delta-wing and slender-body combination in supersonic flow, such
that BtanG>l, may he approximated by

(27)

(28)

provided the body ahead of the wing-body section remains slender with
respect to the Mach cone emanat@ from its nose.

Because of the nature of the factor X3 and the tiUeS of Cmq

and C% for ptan~>l, a general curve, such as
‘%Cmq

plotted against P tan ~, cannot be drawn. Certati basic delta wings
have therefore been chosen and curves of Cma + C% plotted against M

have been draw for different values of k. “These curves are ~resetied
in figure 4.

,

.. —- -. <....- -.---.—- -——— ——-—-— .. .... . . . — ... ... . . ... —. —-—.— —,-. ..- .
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DISCUSSION AND CONCLUDING REMARKS

By an extension of the method used by Spreiter in reference 7 the
pitching-moment derivatives Cm and C% for supersonic speeds have

n
been developed for a slender-delta-wingand slender-body conibination
having no afterbody. By drawing an analogy between the aerodynamics of
the wing-body Bection of the configuration and the aerodynamics of a
delta wing alone, the results for the slender-delta-wfngand slender-
body combination were modified to the extent that approximate solutions
for Cm and c% for broad-delta-w@ and slender-body combinations

q
were also obtained.

h order to check the validity of the reasoning used in arriving at
the assumption by which the approximate solutions were obtained, the same
reasoning was applied to Spreiter’s results for the lift-curve slope c%

of a Wing-body”combination for which an exact solution to the linearized
su~rsonic-tlow equation also exists (reference 6).

In reference 6, Brownej Friedman, and Hodes have presetied sm exact
solution to the linearized equation of steady supersonic flow for a
delta-wing and slender-conical-bodycaib~tion for which the apexes sre
coincident. Spreiter (reference 7) has presented a solutionto the two-
dtiensional Laplace equation for the same configuration. In order to
obtain some indication as to the reliability of the assum~ion made, the
same reasoning was applied to Spreiterts results for c% of the delta-

wing and conical-body configuration as.was applied to the Cma and C
%

results of this paper, and the modification of Spreiter’s resfits were
then compared tiththe results of reference 6. The results of this
comparison are shown in figure 5 wherein PC~ is plotted against

~ tan G for different values of- k. j?or k= 0.70 the curve from
reference 6 is incorrect for high values of P tan c because an insuf-
ficient number of terms of the series results were taken.

From the results of this comparison it appears that values of Cmq

andc ~ for broad-delta-wing and slender-body combinations will give

fairly good approximations up to at least k = O.~.

Langley Aeronautical Laboratory
.

National Advisory Committee for Aeronautics
Langley Field, Vs., August 21, 1951

.
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CONDITIONS FOR - SOLUTION TO APPLY TO SUPERSONIC RANGE

In the limit, as p’ g, + #M., and $ EJ
x approach zero,

a solution to

i8 a solution

B*

the two-dimensional Laplace equation
..

~+lg+L3

8r2 ; ~r ~2 ae2

to the linearized equation of supersonic flow

g-g-% -$$+%!%+$%

Therefore these two equations are compatible if the above limiting con-
ditions are satisfied.

In equation (3) a solution to the two-dimensional Laplace equation
is given as

● .

@ = @(w, R,”S,r,e) (29)

where R =R(x) and S= S(X) =~+Q. If, for the present, the assump-
tion is made that w = w(x,t), from,equation (3)

(30)

. —.. . —..-. . . ... .. .._- .__ ..________ -. ---,-.
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For const-
equations (30) to

rate of pitch, Y = w(x) = q(x - ~), and from

(32)

For constant accelerated motion in the vertical direction,
w= w(t) = at, and from equations (30) to (32)

.

(33)

.

(34)

An examination of equations (33) and (34) shows that, in order for
the Iaplace solution to be a solution to the linearized equation of

2
supersonic flowj

s ~’ “
~ and ~ mnzstapproach zero.

Within the frsmework of the small-disturbancetheory, however, such
stringent conditions as these are not necessary for the Laplace solution

to apply to the supersonic rsmge.
d%

Rather it is required that ~, —
& d’

—.. — —.. .- —.-— .—— —
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K, u and ~ be of such an order of magnitude that P2&

&

ax2’
z M2 a2

~~ benegligibly small compared tiththere~
T x t’ ‘d p&2

terms of the linearized equation of supersonic flow.

0

—.. —.-..—. ——. —_. —-- —--- . . . . . ... -— ..-— - .-_. _ . —. .._.
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